On a Liu–Yau type inequality for surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

On a more accurate multiple Hilbert-type inequality

By using Euler-Maclaurin's summation formula and the way of real analysis, a more accurate multipleHilbert-type inequality and the equivalent form are given. We also prove that the same constantfactor in the equivalent inequalities is the best possible.

متن کامل

On a New Reverse Hilbert\'s Type Inequality

In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.

متن کامل

Inequality of Bogomolov-gieseker’s Type on Arithmetic Surfaces

Let K be an algebraic number field, OK the ring of integers of K, and f : X → Spec(OK) an arithmetic surface. Let (E, h) be a rank r Hermitian vector bundle on X such that E Q is semistable on the geometric generic fiber X Q of f . In this paper, we will prove an arithmetic analogy of Bogomolov-Gieseker’s inequality: ĉ2(E, h)− r − 1 2r ĉ1(E, h) 2 ≥ 0. Table of

متن کامل

On a decomposition of Hardy--Hilbert's type inequality

In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2014

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2014.272.177